Synaptic facilitation and behavioral dishabituation in Aplysia: dependence on release of Ca2+ from postsynaptic intracellular stores, postsynaptic exocytosis, and modulation of postsynaptic AMPA receptor efficacy.
نویسندگان
چکیده
Sensitization and dishabituation of the defensive withdrawal reflex in Aplysia have been ascribed to presynaptic mechanisms, particularly presynaptic facilitation of transmission at sensorimotor synapses in the CNS of Aplysia. Here, we show that facilitation of sensorimotor synapses in cell culture during and after serotonin (5-HT) exposure depends on a rise in postsynaptic intracellular Ca(2+) and release of Ca(2+) from postsynaptic stores. We also provide support for the idea that postsynaptic AMPA receptor insertion mediates a component of synaptic facilitation by showing that facilitation after 5-HT offset is blocked by injecting botulinum toxin, an exocytotic inhibitor, into motor neurons before application of 5-HT. Using a reduced preparation, we extend our results to synaptic facilitation in the abdominal ganglion. We show that tail nerve shock-induced facilitation of siphon sensorimotor synapses also depends on elevated postsynaptic Ca(2+) and release of Ca(2+) from postsynaptic stores and recruits a late phase of facilitation that involves selective enhancement of the AMPA receptor-mediated synaptic response. To examine the potential role of postsynaptic exocytosis of AMPA receptors in learning in Aplysia, we test the effect of injecting botulinum toxin into siphon motor neurons on dishabituation of the siphon-withdrawal reflex. We find that postsynaptic injections of the toxin block dishabituation resulting from tail shock. Our results indicate that postsynaptic mechanisms, particularly Ca(2+)-dependent modulation of AMPA receptor trafficking, play a critical role in synaptic facilitation as well as in dishabituation and sensitization in Aplysia.
منابع مشابه
Synaptic Facilitation and Behavioral Dishabituation in Aplysia: Dependence on Release of Ca from Postsynaptic Intracellular Stores, Postsynaptic Exocytosis, and Modulation of Postsynaptic AMPA Receptor Efficacy
Quan Li,1* Adam C. Roberts,2* and David L. Glanzman1,3 1Department of Physiological Science and 2Interdepartmental PhD Program in Molecular, Cellular, and Integrative Physiology, University of California Los Angeles, Los Angeles, California 90095-1606, and 3Department of Neurobiology and Brain Research Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angel...
متن کاملThe Role of Rapid, Local, Postsynaptic Protein Synthesis in Learning-Related Synaptic Facilitation in Aplysia
The discovery that dendrites of neurons in the mammalian brain possess the capacity for protein synthesis stimulated interest in the potential role of local, postsynaptic protein synthesis in learning-related synaptic plasticity. But it remains unclear how local, postsynaptic protein synthesis actually mediates learning and memory in mammals. Accordingly, we examined whether learning in an inve...
متن کاملGABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus
Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...
متن کاملGABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus
Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...
متن کاملThe potential role of postsynaptic phospholipase C activity in synaptic facilitation and behavioral sensitization in Aplysia.
Previous findings indicate that synaptic facilitation, a cellular mechanism underlying sensitization of the siphon withdrawal response (SWR) in Aplysia, depends on a cascade of postsynaptic events, including activation of inositol triphosphate (IP3) receptors and release of Ca2+ from postsynaptic intracellular stores. These findings suggest that phospholipase C (PLC), the enzyme that catalyzes ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 25 23 شماره
صفحات -
تاریخ انتشار 2005